CHAPTER 3

Display Devices & its Interfacing
Understanding The Operation of a CRT Monitor

Display systems are available in various technologies such as

i) Cathode ray tubes (CRTs),
ii) Liquid crystal displays (LCDs),
iii) Plasma displays, and
iv) Light emitting diodes (LEDs).
v) Touch Screen

The operation of a CRT monitor is basically very simple.

A cathode ray tube (CRT) contains four basic parts:
• Electron gun,
• Focusing and accelerating systems,
• Deflecting systems, and
• Evacuated glass envelope with a phosphorescent screen that glows visibly when struck by the electron beam.

Working of CRT Monitor:
1. An electron gun consists of a series of electrodes producing a narrow beam of high-velocity electrons.
2. When voltage is applied to the heater coil the cathode energizes the electrons and starts the emission of electrons
3. The intensity of the beam is controlled by variation of the negative potential of the cylindrical control grid surrounding the cathode.
4. The control grid has a hole in the front to allow passage of the electron beam.
5. The focus grid adjust its potential to achieve the desired focus. The electrons are accelerated and focused on the fluorescent screen
In order to eliminate flicker, most monitors refresh the screen at a 60 Hz rate.

Working of Color CRT Monitor:
Figure 1 shows a simplified block diagram of a color CRT monitor. The entire circuitry within the monitor can be grouped into three main categories:

i. video signal processing and amplification,
ii. horizontal/vertical deflection and synchronizing, and
iii. Power supply.

As shown in Figure 1, a transmission line or a coaxial cable carries the video signal from the host computer to the monitor.

• The video signal is usually a 1 VPP signal and thus requires amplification before the signal can be applied to the CRT’s cathode.
• The amplification of the video signal is usually done in two stages.
- A low voltage amplifier, often called a preamplifier, amplifies the 1 VPP (Voltage peak to peak) signal to a 4-6 VPP signal.
- In addition to amplification, the preamplifier also provides contrast and brightness control.
- Contrast control allows the user to vary the gain of the video amplifier. Increasing the contrast for instance increases the video signal's level and thus causes the lighter portions of the raster to be brighter than the darker portions. The result is a sharp picture with contrasting light and dark.
- Brightness control on the other hand allows the user to change the brightness of the raster by varying the DC offset of the video signal.
- Increasing brightness in effect makes both the light and dark portions of the image brighter. Most preamplifiers also provide DC restoration or black level clamping which makes the brightness control possible.

FIGURE 1. Simplified Block Diagram of an RBG Monitor

Video Shadow Mask
The colored image is produced varying the intensity of excitation of the three different phosphors that produce the three primary colors (red, green and blue) and reproduce the original colors of the image by an additive color process. The triangular arrangement of electron guns are used. The phosphors are arranged as triangular sets of coloured dots.
A metal shadow mask is placed directly behind the screen in the plane of intersection of the electron beams to ensure that each beam hits the correct phosphor. The mask acts as a physical barrier to the beams as they progress from one location to the next and minimizes the generation of spurious colours by excitation of the wrong phosphor.

Characteristics of CRT Monitor

1. **Dot Pitch**
 Dot Pitch is the distance between each group of red, green and blue (RGB) phosphors. A smaller dot pitch helps sharper, clearer images.

2. **Resolution**
 This quantity is expressed in the number of horizontal and vertical picture elements or pixels. The greater the number of pixels, the more detailed the images.

3. **Interlacing and Non interlacing**
 In non-interlaced (conventional mode), the electron beam sweeps the screen in lines from top to bottom, one line after the other, completing the screen in one pass.
 In interlaced mode, the electron beam sweeps the screen from top to bottom but it does so in two passes—sweeping the odd lines first and even lines second. Each pass takes half the time of a full pass in non-interlaced mode.

<table>
<thead>
<tr>
<th>Interlaced</th>
<th>Non - interlaced</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scans every other line of the image in one pass & the remaining lines in other pass</td>
<td>Scans all lines in single pass</td>
</tr>
<tr>
<td>2. Difficult on the eyes</td>
<td>easy on the eyes</td>
</tr>
<tr>
<td>3. Flicker is more</td>
<td>Flicker is less</td>
</tr>
<tr>
<td>4. Effective image refresh rate is half the vertical scanning rate</td>
<td>Entire image is refresh at vertical Scanning rate</td>
</tr>
</tbody>
</table>

Compiled By : Ms. M.S.Karande (Information Technology Department) Page 4 of 14
4. **Refresh Rate (Vertical Scan Frequency)** is the rate at which the screen display is rewritten. This is measured in hertz. A refresh rate of 72 Hz means the screen is refreshed 72 times per second.

5. **Horizontal Scan Frequency** The frequency at which the monitor rewrites the horizontal lines that make up an image is called horizontal scan frequency.

6. **Video bandwidth** Max Rate at which pixels can be sent to monitor.

<table>
<thead>
<tr>
<th>Sr No</th>
<th>Advantages of LCD</th>
<th>Disadvantages of LCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The sharpness of a LCD Display is at maximum tweakness</td>
<td>After a while the LCD Display some of the pixels will do, you will see a discoloured spot and black spot on the display.</td>
</tr>
<tr>
<td>2</td>
<td>Zero geometric distortion at the native resolution of the panel</td>
<td>Cost of LCD is considerably at a high price.</td>
</tr>
<tr>
<td>3</td>
<td>High peak intensity produces very bright images. Best for brightly lit environments.</td>
<td>The LCD Display will have slow response times.</td>
</tr>
<tr>
<td>4</td>
<td>Screens are perfectly flat</td>
<td>LCD Display has a fixed resolution display and cannot be changed.</td>
</tr>
<tr>
<td>5</td>
<td>Thin with a small footprint. Consume little electricity and produce the heat</td>
<td>LCDs use analog interface making careful adjustment of pixel tracking/phase in order to reduce or eliminate digital noise in the image.</td>
</tr>
<tr>
<td>6</td>
<td>LCD Display unit is very light and can be put anywhere or moved anywhere in the house</td>
<td>The viewing angle of a LCD display is very limited due to automatic pixel tracking/phase controls.</td>
</tr>
<tr>
<td>7</td>
<td>Lack of flicker and low glare reduce eyestrain</td>
<td>Response time-25 milliseconds.</td>
</tr>
<tr>
<td>8</td>
<td>Complete Viewable region</td>
<td>Smaller viewing angle.</td>
</tr>
<tr>
<td>9</td>
<td>Less Weight : 15 lbs</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>e.g Notebooks, Pagers, phones</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sr No</th>
<th>Advantages of CRT</th>
<th>Disadvantages of CRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cathode Ray Tube can easily increase the monitor’s brightness by reflecting the light.</td>
<td>They are bulky and take up space on desk.</td>
</tr>
<tr>
<td>2</td>
<td>They produce more colours</td>
<td>The electromagnetic fields emitted by CRT monitors constitute a health hazard to functioning of living cells.</td>
</tr>
<tr>
<td>3</td>
<td>CRT Monitors have lower price rate than LCD Display or Plasma Display</td>
<td>Constant refreshing of CRT monitors can result in headache.</td>
</tr>
<tr>
<td>4</td>
<td>Quality of image displayed on a CRT is superior to LCD and Plasma monitors.</td>
<td>CRTs operate at very high voltage which can overheat system or result in an implosion.</td>
</tr>
<tr>
<td>5</td>
<td>The contrast features of CRT monitor are considered highly excellent</td>
<td>Within a CRT a strong vacuum exists in it and can result in implosion.</td>
</tr>
<tr>
<td>6</td>
<td>Response Time-13 milliseconds</td>
<td>They are heavy to pick up and carry around.</td>
</tr>
<tr>
<td>7</td>
<td>Large Viewing angle</td>
<td>Viewable region of 17” monitor is 16.1”</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Weight: 40 lbs</td>
</tr>
</tbody>
</table>
Contrast Ratio:
Is the difference in light intensity between the brightest white and the darkest black that an LCD can produce.

How LCD Displays work
- In an LCD, polarizing filter allow only light waves that are aligned with the filter to pass through.
- After passing through one polarizing filter, the light waves are all aligned in same direction.
- By aligning a second polarizing filter at right angle to first, all those waves are blocked.
- By changing the angle of second polarizing filter, the amount of light allowed to pass can be changed accordingly.
- It is the role of the liquid crystal cell to act as a polarizing filter that can change the angle of polarization and control the amount of light that passes.
- The liquid crystals are tiny rod-shaped molecules that flow like a liquid. They enable light to pass straight through, but an electrical charge alters their orientation which subsequently alter the orientation of light passing through them.
- In a color LCD, there are three cells for each pixel one each for displaying Red, Green and Blue. The red, green and blue cells that make up a pixel are sometimes referred to as subpixels.

![Diagram of LCD Display](image)

1. Front Polariser
2, 6 Glass Plate / Electrodes
3, 5 Liquid Crystal Alignment Layer
4 Liquid Crystal
7 Rear Polariser and Reflector

![Diagram of LCD Display](image)

Fig. 9.7 *Liquid crystal display — 2*
Passive-matrix vs. active-matrix driving of LCD Monitors.

Bad Pixels
A bad pixel is one in which the red, green or blue sub pixel cell remains permanently on (stuck pixel) or off (dead pixel).

Passive Matrix LCD
- Passive matrix LCDs use a simple grid to supply the charge to a particular pixel on the display.
- It starts with two glass layers called substrates.
- One substrate is given columns and the other is given rows made from a transparent conductive material (usually indium tin oxide).
- The rows or columns are connected to integrated circuits that control when a charge is sent down a particular column or row.
- The liquid crystal material is sandwiched between the two glass substrates and a polarizing film is added to outer side of each substrate.
- To turn on a pixel, the integrated circuit sends a charge down the correct column of one substrate and a ground activated on correct row of the other. The row and column intersect at the designated pixel and that delivers the voltage to untwist the liquid crystals at that pixel.
- The simplicity of the passive matrix system is beautiful but it has significant drawbacks notably slow response time and imprecise voltage control. Imprecise voltage control hinders the passive matrix's ability to influence only one pixel at a time. When voltage is applied to untwist one pixel the pixels around it also partially untwist which makes images appear fuzzy and lacking in contrast.
Active Matrix LCD
- Active Matrix LCDs depend on thin film transistor (TFT).
- Basically TFTs are tiny switching transistors and capacitors.
- They are arranged in a matrix on a glass substrate.
- To address a particular pixel the proper row is switched on and then a charge is sent down the correct column. Since all of the other rows that the column intersects are turned off, only the capacitor at designated pixel receives a charge.
- The capacitor is able to hold the charge until the next refresh cycle.
- And if we carefully control the amount of voltage supplied to a crystal we can make it untwist only enough to allow some light through.

Plasma Display

Plasma is a slate of gas made up of free flowing ions (+ve) and electrons. Under normal conditions a gas is made up of uncharged particles.

Construction:
1) Xenon and Neon Gas
2) Address Electrodes
3) Display/Discharge Electrodes
4) Dielectric Medium (MgO Magnesium Oxide)
4) Phosphor (Red, Green and Blue Triad)

Working:
- In plasma display xenon and neon atoms are used.
- When an electric current is passed through plasma, the electrons rush towards the positive electrode and ions rush towards the negative electrode.
- During this rush they collide with each other. These collisions excite the gas atoms in the plasma, causing them to release photons of energy.
- These are ultraviolet photons invisible to human eye.
- The released ultraviolet photons interact with phosphor material on the inside wall of the cell and phosphors give off colored light.
- Each phosphor has three separate cells, a red, a blue and a green phosphor.
- These colors blend together to create the overall color of the cell.
- The xenon and neon gas in plasma contain hundreds of thousands of tiny cells positioned between two plates of glass.
- Long electrodes are sandwiched between the glass plates on both the sides of the cells.
- The address electrodes are at the rear glass plate and the discharge electrodes are transparent and mounted along the front glass plate.
- Both sets of electrodes extend across the entire screen.
- To ionize the gas in a particular cell, the electrodes that intersect at that cell are charged.
- When an electric current flows through the gas in the cell, the gas atoms are stimulated and they release ultraviolet photons.
- By varying the pulses of current flowing through the different cells intensity of each subpixel color can be varied to create hundreds of different combinations of red, green and blue.

Touch-Screen

- An input/output device that accept input directly from the monitor, the user touches words, graphical icons, or symbols displayed on screen to activate commands.
- A touch screen is a computer display screen that is sensitive to human touch, allowing a user to interact with the computer by touching pictures or words on the screen.
A basic Touchscreen has three main components:

- A Touch sensor
- A Controller
- A Software driver.

A Touch sensor

- A touch screen sensor is a clear glass panel with a touch responsive surface. The touch sensor/panel is placed over a display screen so that the responsive area of the panel covers the viewable area of the video screen.
- There are several different touch sensor technologies on the market today, each using a different method to detect touch input. The sensor generally has an electrical current or signal going through it and touching the screen causes a voltage or signal change. This voltage change is used to determine the location of the touch to the screen.

A Controller

- The controller is a small PC card that connects between the touch sensor and the PC. It takes information from the touch sensor and translates it into information that PC can understand.
- The controller is usually installed inside the monitor for integrated monitors or it is housed in a plastic case for external touch add-ons/overlays. The controller determines what type of interface/connection you will need on the PC. Specialized controllers are also available that work with DVD players and other devices.

A Software driver

- The driver is a software update for the PC system that allows the touchscreen and computer to work together. It tells the computer's operating system how to interpret the touch event information that is sent from the controller.
- Most touch screen drivers today are a mouse-emulation type driver. This makes touching the screen the same as clicking your mouse at the same location on the screen.

There are basically four types of touch screen technologies:-

1. Resistive Touch Screen
2. Capacitive Touch Screen
3. Surface wave Touch Screen (SAW)
4. Infra Red Touch Screen
1. Resistive Touch Screen

Polyethylene terephthalate commonly refer as PET
Indium Tin Oxide (ITO)

- Two layers of conductive material is there.
- Touch creates contact between resistive layers completing circuit
- Voltage in circuit changes based on position
- Controller determines location based on voltages
- Any material can trigger sensors

2. Capacitive Touch Screen

In the capacitive system, a layer that stores electrical charge is placed on the glass panel of the monitor.
When a user touches the monitor with his or her finger, some of the charge is transferred to the user, so the charge on the capacitive layer decreases. A finger touch draws current from each corner.
This decrease is measured in circuits located at each corner of the monitor.
The controller calculates, from the relative differences in charge at each corner, exactly where the touch event took place and then relays that information to the touch-screen driver software.
One advantage that the capacitive system has over the resistive system is that it transmits almost 90 percent of the light from the monitor, whereas the resistive system only transmits about 75 percent. This gives the capacitive system a much clearer picture than the resistive system.
3. Surface Acoustic Wave

- On the monitor of a **surface acoustic wave system**, two **transducers** (one receiving and one sending) are placed along the x and y axes of the monitor's glass plate.
- Also placed on the glass are **reflectors** -- they reflect an electrical signal sent from one transducer to the other.
- The controller sends a five-megahertz electrical signal to the transmitting transducer, which converts the signal into ultrasonic waves within the surface of the glass. These waves are directed across the touchscreen by an array of reflectors. Reflectors on the opposite side gather and direct the waves to the receiving transducer, which reconverges them into an electrical signal. The process is repeated for each axis.

- These waves are directed across the touchscreen by an array of reflectors.
Reflectors on the opposite side gather and direct the waves to the receiving transducer, which reconverts them into an electrical signal. The process is repeated for each axis.

The receiving transducer is able to tell if the wave has been disturbed by a touch event at any instant, and can locate it accordingly. The wave setup has no metallic layers on the screen, allowing for 100-percent light throughput and perfect image clarity.

When you touch the screen, you absorb a portion of the waves traveling across it. The received signals for X and Y are compared to the stored digital maps, the change is recognized, and a coordinate is calculated.

{A transducer is an electronic device that converts energy from one form to another. Common examples include microphones, loudspeakers, thermometers, position and pressure sensors, and antenna. Although not generally thought of as transducers, photocells, LEDs (light-emitting diodes), and even common light bulbs are transducers. For example, a stereo speaker converts the electrical signals of recorded music into sound.}

4. **Infrared Touch Screen**

- Uses infrared LEDs and matching photodetectors
- Touching screen interrupts LEDs
- Cameras detect reflected LED caused by touch
- Controller able to calculate coordinates from camera data.
Video designers seek to overcome the limitations of conventional video adapters by incorporating processing power onto the video board itself rather than relying on the system CPU for graphic processing.

Graphics co-processors are the most sophisticated type of accelerator. The co-processor acts as a CPU that is dedicated to handling image data.

The graphics chip connects directly with the PC expansion bus. It consists of

1) **Video BIOS ROM**: Video BIOS provides a set of video related functions that are used by the programs to access the video hardware.

2) **Video RAM (Frame Buffer)**: Video Memory is to store images processed by the GPU before they are displayed by the monitor. The larger the video memory, the better the graphics card can handle textures when displaying 3D scenes.

3) **Graphic Accelerator or co-processor (GPU-Graphical Processing Unit)**
 GPU is a specialized processor with advanced image processing capabilities especially for 3D graphics.

4) **RAMDAC (Random Access Memory Digital-Analog Converter)**:
 It is used for converting digital images stored in the frame buffer as analog signals to send to the monitor.